
Features

Outline Dimensions

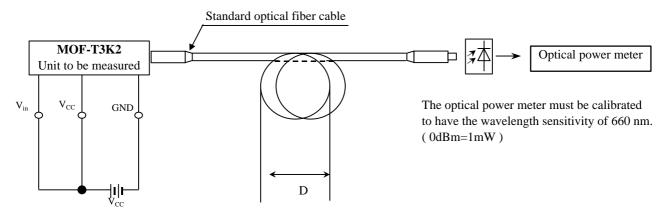
Recommended drilling as viewd from the soldering face

NOTES:

Tolerance is ± 0.3 mm unless otherwise noted.

Absolute Maximum Ratings @TA=25°C Parameter Symbol Rating Unit V_{cc} -0.5 to + 7.0 V Supply voltage V_{in} -0.5 to Vcc +0.5 V Input voltage °C -20 to +70 Topr Operating temperature °C Storage temperature T_{stg} -30 to +80 °C Soldering temperature ^{*1} $\mathrm{T}_{\mathrm{sol}}$ 260

*1 For 5s (2 times or less)


Recommended Operating Conditions

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Operating supply voltage	V _{cc}	4.75	5.0	5.25	V
Operating transfer rate	Т			8	Mbps

Electro-Optical Characteristics

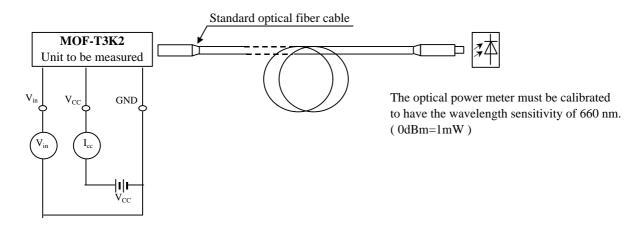
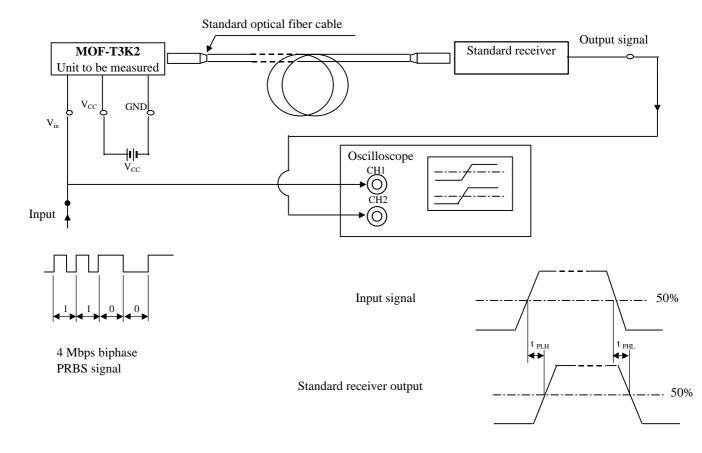

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Peak emission wavelength	λ_{p}		630	660	690	nm
Optical power output coupling with fiber	P _c	Refer to Fig. 1	-21	-18	-15	dBm
Dissipation current	I _{cc}	Refer to Fig. 2		8	13	mA
High level input voltage	V _{iH}	Refer to Fig. 2	2.1		V _{cc}	V
Low level input voltage	V _{iL}	Refer to Fig. 2			0.8	V
Low High delay time	t _{pLH}	Refer to Fig. 3		120		ns
High Low delay time	t _{pHL}	Refer to Fig. 3		120		ns
Pulse width distortion	Δ_{tw}	Refer to Fig. 3	-25		+25	ns

Fig. 1 Measuring Method of Optical Output Coupling with Fiber

Notes (1)Vcc=5.0V (State of operating) (2)To bundle up the standard fiber optic cable, make it into a loop with the diameter D=10cm or more.


Fig. 2 Measuring Method of Intput Voltage and Supply Current

Input conditions and judgement method

Conditions	Judgement method			
V _{in} =2.1V or more	-21dBm<=Pc<=-15dBm, Icc=13mA or less			
V _{in} =0.8V or less	Pc<=-36dBm, Icc=13mA or less			

Note: V_{cc} =5.0V (State of operating)

Fig.3 Measuring Method of Pulse Response

Test item

Test item	Symbol	Test condition
Low High pulse delay time	t _{PLH}	Refer to the above prescriptions
High Low pulse delay time	t _{PHL}	Refer to the above prescriptions
Pulse width distortion	Δtw	$\Delta tw = t_{PHL} - t_{PLH}$

Notes (1) The waveform write time shall be 4 seconds. But do not allow the waveform to be distorted by increasing the brightness too much. (2) Vcc=5.0 V (State of operating)

(3) The probe for the oscilloscope must be more than 1M and less than 10pF.